Step of Proof: eq_atom_eq_true_elim
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
eq
atom
eq
true
elim
:
x
,
y
:Atom. (
x
=a
y
= tt)
(
x
=
y
)
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
x
: Atom
C1:
2.
y
: Atom
C1:
3.
x
=a
y
= tt
C1:
x
=
y
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
btrue
wf
,
eq
atom
wf
,
bool
wf
origin